6th Grade Science Project

Kush Gulati

Wind power Vs.

Hydro power Vs. Solar power

Overall Topic Problem :

Which form of renewable energy is the most efficient at converting energy from one form to the other (electrical energy)?

- Wind Power
- Hydro Electric Power
- Solar Power

Topic Problem

IF the wind speed increases,

THEN will that cause power output of the wind turbine to increase?

IF the amount of water and/or height of the water dropped increases, THEN will that cause power output of the hydro power turbine increase?

IF the amount of sunlight increases,

THEN will that cause **power output** of the solar cell to increase?

Hypothesis

I predict that if **wind speed** increases then **power output of the wind turbine** will increase because **more energy input should produce more energy output.**

I predict that if height of the water dropped and/or the weight of water increases then power output of the hydro power turbine will increase because more energy input should produce more energy output.

I predict that if **amount of sunlight** increases then **power output of the solar cell** will increase because **more energy input should produce more energy**

Hypothesis

I think that the solar power cell will generate the most watts because it is a widely used renewable way to generate electricity.

Independent Variable

Solar cell: The independent variable is the amount of sunlight.

Hydro power turbine: The independent variable is height and weight of the water dropped.

Wind Power: The independent variable is wind speed.

Dependent Variable The dependent variable is Energy output of wind turbine/Hydroelectric turbine/solar cell (mW) = Voltage(V) X Current(mA)

The unit of measurement is milliWatts

The device that measures this is a Multimeter.

Constants

The constants are:

Wind power

- Area of the blades of the wind Turbine.
- Gear Ratio of the wind Turbine.
- Angle of the blades to the wind direction.

Hydro Power

- Area of the blade of hydro power turbine
- Angle of the water falling on the turbine.

Solar Power

- Angle of the sun to the Solar cell.
- Area of the solar cell (Length X Width)
- <u>Cloudiness/Visibility</u>

Materials

The materials required are as follows for Wind Power:

Wind Power	Hydro Power experiment	Solar Power experiment
Equipment: - Wind Power Kit - Consumable supplies: - None.	Equipment: - Hydropower Kit - Funnel - Pipe - Aluminium tray to drain water.	Equipment: - Solar cell Consumable supplies: - None.
Measurement devices: - Multimeter - Anemometer	Consumable supplies: -None. Measurement devices:	Measurement devices: - Multimeter Safety Equipment:
Safety Equipment:	 Multimeter Measuring tape Weighing scale Measuring jar 	Sunglasses
	Safety Equipment:	

Wind Power:

- 1. I first built my wind power kit
- 2. I went outside to the a place with wind
- 3. Checked and noted the wind speed on my anemometer and on the weather channel on 6 separate days
- 4. Each time to measure the power generated by the wind turbine, I plugged in the wires into the appropriate spot.
- 5. I put tape on it to hold it together.
- 6. I recorded the current and the voltage
- 7. I multiplied them both to get the power generated. It was in mW.
- 8. I recorded my data

Solar Power

- 1. I went outside with my solar cell
- 2. I noted what angle the sun was at that time.
- 3. I plugged in the wires into the terminal of the solar cell.
- 4. I put tape on it to hold it together.
- 5. I got the voltage and the current
- 6. I multiplied them to get the power generated. It was in mW
- 7. I recorded my data

Hydro Power

- 1. I built my Hydro Power kit
- 2. I put my built Hydro Power kit onto a aluminum foil pan
- 3. I connected the wires from the terminal where LED was plugged into the Hydro Power kit to the multimeter.
- 4. I put tape on it to hold it together.
- Poured the different amounts of water at different heights onto the kit
- 6. Measured the voltage and current produced on the multimeter
- 7. Current was in milliAmpere. Voltage was in Volts. So I multiplied the voltage and current to get power in milliWatts
- 8. I recorded my data

https://www.youtube.com/watch?v=5bLuhihNago

Wind Power Data

Independent vs Dependent variable

Independent(Wind Speed in mph)	Dependent Variable (units)				
	Voltage (V)	Current (mA)	Electric Power(mW)		
10	0.7	30	21		
21	1.7	115	195.5		
17	1.2	79	94.8		
15	1.1	56	61.6		
18	1.4	89	124.6		
12	0.9	43	38.7		
Average >>	1.16	68.6	89.36		

Hydro Power Data Independent vs Dependent variables

Independent (Height of falling	Input Power (mW)	Dependent Variable (units)			
water)		Voltage (V)	Current (mA)	Electric Power(mW)	
36 cm X 1 kg X 9.8 m/s²	352.8	1.83	53.2	97.36	
72 cm X 1 kg X 9.8 m/s ²	705.6	2.6	72.3	187.98	
36 cm X 2 kg X 9.8 m/s ²	705.6	2.4	88.9	213.36	
72 cm X 2 kg X 9.8 m/s ²	1411.2	2.8	121.4	339.92	
Average>>		2.41	83.95	209.65	

Solar Power Data Independent vs Dependent variables

Independent(Time of the Day) (Angle of the Sun to	Dependent Variable (units)			
the Solar Cell)	Voltage (V)	Current (mA)	Electric Power(mW)	
8 AM	1.38	96	132.48	
10 AM	1.39	115	159.85	
12 noon	1.64	176	288.64	
2 PM	1.74	186	323.64	
4 PM	1.44	67	96.48	
6 PM	1.34	6.4	8.576	
Average>>	1.4833	107.7333	168.277	

Graph : Wind Power

Wind Speed (mph)

Graph: Hydro Power

Input Power (mW) – From potential energy of water

Graph : Solar Power

Time of Day

Results

	Wind Power Turbine Efficiency Data					0.5	5 *0.41*0. 0	6*3	
v in mph	v in meters per sec	vxvxv	Power input = 0.5 * Air Density(in kg/m3) * Area of Blades (in m2) * v*v*v (in m/s) * 1000 in milliWatts	Power Output (Voltage X Current) in mW	Efficiency %		Area of 3 Blades :	0.0369	sq meters
10	4.47	89.34	2027.41	21	1.035807				
21	9.39	827.36	18775.80	195.5	1.041234				
17	7.60	438.92	9960.64	94.8	0.951746				
15	6.71	301.52	6842.49	61.6	0.900257				
18	8.05	521.02	11823.83	124.6	1.053804				
12	5.36	154.38	3503.36	38.7	1.104655	Average Efficiency :	1.014583595		

	Hydro Power Turbine Efficiency Data							
Mass of water(in	Height of Water (in	g (in		Power Output (Voltage X	Efficiency			
kσ)	motors)	mlcoc 21	Power input = mgh/10 cos * 1000 in milliWatts	Current) in m14/	0/			
	metersj	m/sec zj	Power input = mgn/10 sec * 1000 in miniwatts	currency in mw	70			
1	0.36	9.8	352.8	97.36	27.59637			
1	0.36	9.8 9.8	352.8 705.6	97.36 187.98	27.59637 26.64116			
1 1 2	0.36 0.72 0.36	9.8 9.8 9.8 9.8	352.8 705.6 705.6	97.36 187.98 213.36	27.59637 26.64116 30.2381			
1 1 2 2	0.36 0.72 0.36 0.72	9.8 9.8 9.8 9.8 9.8 9.8	352.8 705.6 1411.2	97.36 187.98 213.36 339.92	27.59637 26.64116 30.2381 24.0873	Average Efficiency :	27.14073129	

			Solar Cell Efficiency Data					
Area of solar cell (in sq	input to solar cell (in Watts	Time of		from cell (Voltage X Current) in	Efficiency			
meters)	/ sq	the Day	Power input = Area * Solar power input * 1000 in mW	MilliWatts	%			
0.0048	1000	8:00 AM	4800	132.48	2.76			
0.0048	1000	10:00 AM	4800	159.85	3.330208			
0.0048	1000	12 noon	4800	288.64	6.013333			
0.0048	1000	2:00 PM	4800	323.64	6.7425			
0.0048	1000	4:00 PM	4800	96.48	2.01			
0.0048	1000	6:00 PM	4800	8.576	0.178667	Average Efficiency :	3.505784722	

Conclusion

The most efficient renewable energy source is Hydro power. Hydro power was the oldest way of making renewable energy. My hypothesis was wrong and it was not the solar cell that was most efficient.

Research Summary

 Wind power Input : is calculated by finding out the kinetic energy of wind which is hitting the blades of the wind turbine per unit time.

$$E_{Kinetic} = \frac{1}{2} mv^{2}$$

$$E_{Kinetic} = \frac{1}{2} \rho V v^{2}$$

$$E_{Kinetic} / \Delta t = \frac{1}{2} \rho A \Delta s / \Delta t v^{2}$$

$$E_{Kinetic} / \Delta t = \frac{1}{2} \rho A v^{3}$$

$$Power_{input} = \frac{1}{2} \rho A v^{3}$$

Wind power output : is measured using the Voltage and current being produced using the multimeter.

 $Power_{output} = V(Voltage)XI(Current)$

Research Summary – Wind Power Weather report for Wind Speed

Research Summary – Wind Power

Wind power – Using Omni calculator to calculate <u>air density</u>

OMNI[®] CALCULATOR Your life in 921 calculators.

Learn M

Marcus high-yield Online Savings Account.

aldman Sachs Bank USA, Member FD

Air pressure	30 <mark>.9 <u>in Hg</u> •</mark>
Air temperature	70 <u>°F •</u>
Air type	Moist air 💌
Relative humidity	70 %
Dew point	59.76 °F 🔹
Air density	1.23095 <u>kg/m³ •</u>

ADDITIONAL CONDITIONS

Pressure	30.09 in
Visibility	10 miles
Clouds	Partly Cloudy
Dew Point	62 F
Humidity	56 %
Rainfall	0 in
Snow Depth	0 in

Research Summary – Wind Power

Wind power turbine efficiency =

•

Power_{output} / X100

Research Summary

- Hydro power Input : is calculated by finding out the potential energy of water which is hitting the blades of the Hydro electric turbine per unit time.
- Hydro power output : is measured using the Voltage and current being produced using the multi-meter.

 $Power_{output} = V(Voltage)XI(Current)$

Hydro power turbine efficiency =

Power_{output} / X100

Research Summary

- Solar power Input : is calculated by finding out the energy of sun which is hitting the solar cell per unit time. On a clear sunny day in Naples, FL this can be assumed to be 1 solar unit = 1000 Watts/m^2
- Solar power output : is measured using the Voltage and current • being produced using the multimeter.

 $Power_{output} = V(Voltage)XI(Current)$

Solar cell power efficiency = $\frac{Power_{output}}{Power_{input}} X100$

Bibliography

Energy conversion and loss of energy;

https://energyeducation.ca/encyclopedia/Energy_loss

J.M.K.C. Donev et al. (2015). Energy Education - Energy loss [Online]. Available: https://energyeducation.ca/encyclopedia/Energy_loss. [Accessed: October 16, 2019].

Wind Energy 101:

http://web.mit.edu/windenergy/windweek/Presentations/Wind%20Ener gy%20101.pdf

 Alex Kalmikov and Katherine Dykes, Kathy Araujo PhD Candidates, MIT Mechanical Engineering, Engineering Systems and Urban Planning, MIT Wind Energy Group &
 Renewable Energy Projects in Action Renewable Energy Projects in Action. Email: wind@mit.edu

Bibliography

How to measure the output of a solar cell:

https://www.exploratorium.edu/snacks/output-solar-cell

Exploratorium Teacher Institute, Pier 15, San Francisco, CA 94111-1455

Hydro Electric Power basics:

https://www.eia.gov/energyexplained/hydropower/

http://large.stanford.edu/courses/2016/ph240/jones-j1/docs/hydro-doi-2005.pdf

Reclamation Managing Water in the West, US Department of Interior, Bureau of Reclamation, Power Resources Office July 2005

How to measure electrical energy?
https://www.electronics-tutorials.ws/dccircuits/dcp_3.html
Electronics-totorials.ws By AspenCore, Inc., 1455 NW Irving Street, Suite 200, Portland, OR 97209

Bibliography

How to use a multimeter?

https://learn.sparkfun.com/tutorials/how-to-use-a-multimeter/all SparkFun Electronics, 6333 Dry Creek Parkway, Niwot, CO 80503

How to measure the Sun's energy falling on a part of the earth? https://www.itacanet.org/the-sun-as-a-source-of-energy/part-2-solarenergy-reaching-the-earths-surface/

Omnicalculator : to Calculate density of air. https://www.omnicalculator.com/physics/air-density

All data tables and graphs created by Kush Gulati

All photographs taken by : Manish Gulati and Ritu Grover (Parents of the scientist) All kits were made by Kush Gulati Inspiration credit is given to Manish Gulati